Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.709
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542205

RESUMO

The MYB protein is a pivotal player in the cellular transcriptional network, influencing major important processes such as cell proliferation, differentiation, and apoptosis. Because of its role in oncogenesis, MYB is now a compelling target for therapeutic interventions in cancer research. This review summarizes its molecular functions and current therapeutic approaches aiming to inhibit its oncogenic activity.


Assuntos
Carcinoma Adenoide Cístico , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Regulação da Expressão Gênica , Carcinoma Adenoide Cístico/metabolismo
2.
Bioessays ; 46(2): e2300125, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059789

RESUMO

DREAM complexes are transcriptional regulators that control the expression of hundreds to thousands of target genes involved in the cell cycle, quiescence, differentiation, and apoptosis. These complexes contain many subunits that can vary according to the considered target genes. Depending on their composition and the nature of the partners they recruit, DREAM complexes control gene expression through diverse mechanisms, including chromatin remodeling, transcription cofactor and factor recruitment at various genomic binding sites. This complexity is particularly high in mammals. Since the discovery of the first dREAM complex (drosophila Rb, E2F, and Myb) in Drosophila melanogaster, model organisms such as Caenorhabditis elegans, and plants allowed a deeper understanding of the processes regulated by DREAM-like complexes. Here, we review the conservation of these complexes. We discuss the contribution of model organisms to the study of DREAM-mediated transcriptional regulatory mechanisms and their relevance in characterizing novel activities of DREAM complexes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Drosophila/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo
3.
Genetica ; 151(3): 251-265, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37266766

RESUMO

In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.


Assuntos
Genoma de Planta , Pennisetum , Estresse Fisiológico , Pennisetum/genética , Proteínas Proto-Oncogênicas c-myb/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Cromossomos de Plantas , Redes Reguladoras de Genes
5.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36999545

RESUMO

The regulation of the initiation of transcription by transcription factors is often assumed to be dependent on specific recognition of DNA-binding sites and nonredundant. However, the redundant induction or rescue of a phenotype by transcription factors, phenotypic nonspecificity, challenges these assumptions. To assess the frequency of phenotypic nonspecificity in the rescue of transcription factor phenotypes, seven transcription factor phenotypes (labial, Deformed, Sex combs reduced, Ultrabithorax, fruitless, doublesex, and apterous) were screened for rescue by the expression of 12, or more, nonresident transcription factors. From 308 assessments of rescue by nonresident transcription factors, 18 rescues were identified across 6 of the 7 transcription factor phenotypes. Seventeen of the 18 rescues were with transcription factors that recognize distinct DNA-binding sites relative to the resident transcription factors. All rescues were nonuniform across pleiotropic transcription factor phenotypes suggesting extensive differential pleiotropy of the rescue. Primarily using RNAi to knockdown expression, and with the exceptions of the requirement of Bric a Brac 1 for female abdominal pigmentation and Myb oncogene-like for wing development, no evidence was found for a role of the other 16 nonresident transcription factor in the transcription factor phenotypes assessed. Therefore, these 16 rescues are likely due to functional complementation and not due to the expression of an epistatic function in the developmental/behavioral pathway. Phenotypic nonspecificity is both differentially pleiotropic and frequent, as on average 1 in 10-20 nonresident transcription factors rescue a phenotype. These observations will be important in future considerations of transcription factors function.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo
6.
Biosci Rep ; 43(4)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36994664

RESUMO

BACKGROUND: MYB proto-oncogene is verified as a transcription factor. Although emerging evidence showed that MYB plays a critical part in tumor progression and immunity, a systematic pan-cancer analysis of MYB still remains to be performed for determining whether MYB could serve as a biomarker for cancer screening, prognosis prediction and accurate therapy design in various human cancers. METHODS: In the present study, we performed qRT-PCR, wound healing assay and transwell assay to validate the expression level and biological function of MYB in bladder cancer. Then, we utilized several open-source databases including UCSC Xena database, TCGA, GTEx, etc. Online tools was used to process the raw data from UCSC Xena database. RESULTS: We found that the expression level of MYB is significantly higher in bladder cancer cell lines than urothelial cells. Further experiments confirmed that overexpression of MYB enhanced the ability of migration in bladder cancer. Next, we found that the expression level of MYB is significantly higher in most cancers. Meanwhile, MYB expression was positively or negatively related with the prognosis in different cancer types. In addition, MYB expression is significantly related to immune score and immune cells in most cancer types. Moreover, MYB act as an immunotherapy biomarker superior to several traditional immunotherapy biomarkers. Finally, deep deletion was the most frequent genetic alteration of MYB. CONCLUSION: MYB may serve as a powerful biomarker for tumor screening, prognostic, individualized treatment strategy in a broad range of malignancies.


Assuntos
Proteínas Proto-Oncogênicas c-myb , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/imunologia , Humanos , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Deleção de Genes , Imunoterapia , Movimento Celular , Proteínas de Checkpoint Imunológico/genética , Microambiente Tumoral/imunologia , Mapas de Interação de Proteínas
7.
Biochemistry ; 62(7): 1321-1329, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883372

RESUMO

The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.


Assuntos
Proteína p300 Associada a E1A , Peptídeos , Proteínas Proto-Oncogênicas c-myb , Peptídeos/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myb/química , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/química
8.
Blood ; 141(15): 1858-1870, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36603185

RESUMO

MYB plays a key role in gene regulation throughout the hematopoietic hierarchy and is critical for the maintenance of normal hematopoietic stem cells (HSC). Acquired genetic dysregulation of MYB is involved in the etiology of a number of leukemias, although inherited noncoding variants of the MYB gene are a susceptibility factor for many hematological conditions, including myeloproliferative neoplasms (MPN). The mechanisms that connect variations in MYB levels to disease predisposition, especially concerning age dependency in disease initiation, are completely unknown. Here, we describe a model of Myb insufficiency in mice that leads to MPN, myelodysplasia, and leukemia in later life, mirroring the age profile of equivalent human diseases. We show that this age dependency is intrinsic to HSC, involving a combination of an initial defective cellular state resulting from small effects on the expression of multiple genes and a progressive accumulation of further subtle changes. Similar to previous studies showing the importance of proteostasis in HSC maintenance, we observed altered proteasomal activity and elevated proliferation indicators, followed by elevated ribosome activity in young Myb-insufficient mice. We propose that these alterations combine to cause an imbalance in proteostasis, potentially creating a cellular milieu favoring disease initiation.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Animais , Camundongos , Humanos , Proteostase , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica , Leucemia/metabolismo , Transtornos Mieloproliferativos/metabolismo
9.
J Biol Chem ; 299(1): 102725, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410437

RESUMO

MYB, a proto-oncogene, is overexpressed in prostate cancer (PCa) and promotes its growth, aggressiveness, and resistance to androgen-deprivation therapy. Here, we examined the effect of androgen signaling on MYB expression and delineated the underlying molecular mechanisms. Paralleling a dichotomous effect on growth, low-dose androgen induced MYB expression at both transcript and protein levels, whereas it was suppressed in high-dose androgen-treated PCa cells. Interestingly, treatment with both low- and high-dose androgen transcriptionally upregulated MYB by increasing the binding of androgen receptor to the MYB promoter. In a time-course assay, androgen induced MYB expression at early time points followed by a sharp decline in high-dose androgen-treated cells due to decreased stability of MYB mRNA. Additionally, profiling of MYB-targeted miRNAs demonstrated significant induction of miR-150 in high-dose androgen-treated PCa cells. We observed a differential binding of androgen receptor on miR-150 promoter with significantly greater occupancy recorded in high-dose androgen-treated cells than those treated with low-dose androgen. Functional inhibition of miR-150 relieved MYB suppression by high-dose androgen, while miR-150 mimic abolished MYB induction by low-dose androgen. Furthermore, MYB-silencing or miR-150 mimic transfection suppressed PCa cell growth induced by low-dose androgen, whereas miR-150 inhibition rescued PCa cells from growth repression by high-dose androgen. Similarly, we observed that MYB silencing suppressed the expression of androgen-responsive, cell cycle-related genes in low-dose androgen-treated cells, while miR-150 inhibition increased their expression in cells treated with high-dose androgen. Overall, these findings reveal novel androgen-mediated mechanisms of MYB regulation that support its biphasic growth control in PCa cells.


Assuntos
Androgênios , MicroRNAs , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myb , Humanos , Masculino , Antagonistas de Androgênios , Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Processamento de Proteína Pós-Traducional , Células Tumorais Cultivadas
10.
Cells ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497007

RESUMO

Background: Numerous studies have suggested that long non-coding RNA (lncRNA) affects the progression of ischemic acute kidney injury (IAKI). However, little information is currently available concerning the mechanisms of lncRNA171502 involved in IAKI. Methods: We applied an RT-qPCR assay for the expression of lncRNA171502 and miRNA-130b-3p, immunoblotting for the detection of Mybl-1-myeloblastosis oncogene-like 1 (Mybl-1) and cleaved caspase-3 (CC3) expression, and flow cytometry (FCM) for the evaluation of apoptosis. Result: Initially, lncRNA171502 was induced by HIF-1α in the mouse proximal tubular (BUMPT) cell line and C57BL/6J mice during ischemic injury. Secondly, ischemic injury-induced BUMPT cell apoptosis was markedly relieved following the overexpression of lncRNA171502. However, this effect was enhanced by the knockdown of lncRNA171502. Mechanistically, lncRNA171502 could sponge miRNA-130b-3p and would subsequently upregulate the expression of Mybl-1 to drive the apoptotic process. Lastly, the overexpression of lncRNA171502 alleviated the development of IAKI by targeting miRNA-130b-3p/Mybl-1 pathways. Conclusions: In summary, the HIF-1α/lncRNA171502/miRNA-130b-3p/Mybl-1 axis prevented the progression of IAKI and might serve as a potential therapeutic target.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Injúria Renal Aguda/genética , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , RNA Longo não Codificante/genética , Proteínas Proto-Oncogênicas c-myb , Transativadores
11.
Nature ; 609(7926): 354-360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978192

RESUMO

CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality-which is referred to as T cell exhaustion1,2-is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1- exhausted effector T cells3-6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-myb , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Autorrenovação Celular , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Imunoterapia , Selectina L/metabolismo , Células Precursoras de Linfócitos T/citologia , Células Precursoras de Linfócitos T/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Vírus/imunologia
12.
Crit Rev Oncol Hematol ; 176: 103745, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738530

RESUMO

Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22-23;p23-24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Fusão Gênica , Humanos , Fatores de Transcrição NFI/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-myb , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/terapia , Translocação Genética
13.
Blood ; 140(10): 1132-1144, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653587

RESUMO

Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.


Assuntos
Leucemia Promielocítica Aguda , Proteínas Proto-Oncogênicas c-myb , Proteínas WT1 , Cromatina/metabolismo , Mutação em Linhagem Germinativa , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas WT1/genética
15.
Cells ; 11(7)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406726

RESUMO

Recent studies have disclosed transcription factor MYB as a potential drug target for malignancies that are dependent on deregulated MYB function, including acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often regarded as undruggable, successful targeting of MYB by low-molecular-weight compounds has recently been demonstrated. In an attempt to repurpose known drugs as novel MYB-inhibitory agents, we have screened libraries of approved drugs and drug-like compounds for molecules with MYB-inhibitory potential. Here, we present initial evidence for the MYB-inhibitory activity of the protein kinase inhibitors bosutinib, PD180970 and PD161570, that we identified in a recent screen. We show that these compounds interfere with the activity of the MYB transactivation domain, apparently by disturbing the ability of MYB to cooperate with the coactivator p300. We show that treatment of the AML cell line HL60 with these compounds triggers the up-regulation of the myeloid differentiation marker CD11b and induces cell death. Importantly, we show that these effects are significantly dampened by forced expression of an activated version of MYB, confirming that the ability to suppress MYB function is a relevant activity of these compounds. Overall, our work identifies several protein kinase inhibitors as novel MYB-inhibitory agents and suggests that the inhibition of MYB function may play a role in their pharmacological impact on leukemic cells.


Assuntos
Carcinoma Adenoide Cístico , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição , Quinases da Família src
16.
Sci Rep ; 12(1): 6692, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461324

RESUMO

The crosstalk between osteosarcoma (OS) development and abnormally expressed microRNA (miR)-601 is not explored explicitly. Here, we identified the downregulated miR-601 in osteosarcoma (OS) through a comprehensive bioinformatics analysis of GEO Datasets. The results indicated that miR-601 was downregulated in both OS cells and tissues. The OS patients with reduced expression of miR-601 displayed worse prognosis. The results of in vitro and in vivo assay revealed that elevated miR-601 inhibited the proliferative, migratory and invasive capacities in OS cells. Mechanically, miR-601 exerted its function via targeting oncogene protein kinase membrane associated tyrosine/threonine 1 (PKMYT1) at post-transcriptional level. Moreover, miR-601 was attenuated by c-Myb at transcriptional level. Taken together, our studies reveal that miR-601 is a suppressive gene negatively correlated with malignancy of OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-myb , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo
17.
Leukemia ; 36(6): 1541-1549, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35368048

RESUMO

A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-myb , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mebendazol , Oncogenes , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição/genética
18.
Cell Death Dis ; 13(2): 126, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136029

RESUMO

Myelodysplastic syndrome (MDS) is a group of heterogeneous hematologic malignancies with a risk of transformation to acute myeloid leukemia. Understanding the molecular mechanisms of the specific roles of long noncoding RNAs (lncRNAs) in MDS would create novel ways to identify diagnostic and therapeutic targets. The lncRNA BC200 is upregulated and acts as an oncogene in various cancers; however, its expression, clinical significance, and roles in MDS remain unclear. Here, we found that BC200 was highly expressed in MDS patients compared with normal individuals. Knockdown of BC200 inhibited MDS cell proliferation, colony formation, and cell cycle progression in vitro and suppressed the growth and invasiveness of MDS cells in vivo. Mechanistic investigations revealed that BC200 functioned as a miRNA sponge to positively regulate the expression of MYB through sponging miR-150-5p and subsequently promoted malignant proliferation of MDS cells. Conversely, we found that BC200 was a direct transcriptional target of MYB, and knockdown of MYB abolished the oncogenic effect of BC200/miR-150-5p. Taken together, our results revealed that the BC200/miR-150-5p/MYB positive feedback loop promoted the proliferation of MDS cells and is expected to be a potential biomarker and therapeutic target in MDS.


Assuntos
MicroRNAs , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas c-myb/genética , RNA Longo não Codificante/genética
19.
Mol Genet Genomics ; 297(1): 125-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34978004

RESUMO

The MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs. The overview of conserved motifs, gene structures, and cis elements as well as the expression pattern of CtMYB genes indicated the diverse roles of these transcription factors during plant growth, regulation of secondary metabolites, and various abiotic stress responses. The subcellular localization and transactivation analysis of four CtMYB proteins indicated predominant localization in the nuclei with enhanced transcriptional activation in yeast. The expression of CtMYB63 induced with various abiotic stress conditions showed upregulation in its transcription level. In addition, the expression analysis of the core structural genes of anthocyanin biosynthetic pathway under drought and cold stress in CtMYB63 overexpressed transgenic lines also supports the notion of CtMYB63 transcriptional reprogramming in response to abiotic stress by upregulating the anthocyanin biosynthesis. Together, our findings revealed the underlying regulatory mechanism of CtMYB TF network involving enhanced cold and drought stress tolerance through activating the rapid biosynthesis of anthocyanin in C. tinctorius. This study also presents useful insights towards the establishment of new strategies for crop improvements.


Assuntos
Antocianinas/metabolismo , Carthamus tinctorius/genética , Proteínas Proto-Oncogênicas c-myb/genética , Estresse Fisiológico/genética , Antocianinas/biossíntese , Antocianinas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Carthamus tinctorius/classificação , Carthamus tinctorius/crescimento & desenvolvimento , Reprogramação Celular/genética , Resposta ao Choque Frio , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas , Proteínas Proto-Oncogênicas c-myb/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...